Experimental report

Proposal: TEST-2591		-2591				Council: 4/2016	
Title:	Dynan	Dynamics of Polyelectrolyte-microemulsion Mixtures					
Research a	area:						
This proposal is a new proposal							
Main proposer:		Andrew DENNISON					
Experimental team:		Miriam SIMON					
Local contacts:		Ingo HOFFMANN					
Samples:	D2O						
	C16H35NO						
	C17H38NBr						
	(C2H2O2)n						
	C10H22						
Instrument			Requested days	Allocated days	From	То	
IN15			3	3	13/09/2016	17/09/2016	
Abstract:							

Experimental Report for TEST-2591: Dynamics of Polyelectrolyte-microemulsion Mixtures

March 27, 2017

We measured the dynamics of mixtures of different slightly cationic o/w microemulsion (ME) droplets and anionic polyelectrolytes (polyacrylic acid (PAA) of different chain lenghts and hyaluronic acid (HA)) on the neutron spin-echo (NSE) spectrometer IN15 using wavelengths λ between 6 and 14 Å reaching Fourier times of up to 600 ns. The size of the ME droplets and the ratio between PE and droplets was varied.

Fitting the data with a simple exponential of the form $S(q,t) = \exp(-D_{eff}q^2t)$ it can be seen that the mixtures of microemulsions and polyelectrolyte are significantly slower than the pure ME (see fig. 1, purple squares: ME droplets without PE). This means that the microemulsion droplets are bound in relatively large mixed aggregates with the polyelectrolyte. At high q around 0.1 1/Å a peak in D_{eff} can be seen which is hardly affected by the addition of the different PEs. This peak is due to shape fluctuations of the ME droplets as described in the Milner-Safran model and it can be concluded that these shape fluctuations and the corresponding bending elasticity constants are not greatly influenced by the PEs. At lower q between 0.03 and 0.04 1/Å a small shallow peak is observed, which we currently believe to be due to a bending motion of elongated mixed aggregates. Their deformation in the radial direction of the long axis would occur as a new dynamic mode. It can also be seen that the low q peak is slightly shifted to lower q for HA (green and blue triangles) compared to PAA (red circles). This will be investigated in more detail in future experiments.

Figure 1: D_{eff} as a function of q for mixtures of the same droplet ME without any additional PE (purple squares), with 60 kg/mol (red circles), with 81 kg/mol HA (blue downward triangles) and 800 kg/mol HA (green upward triangles)