Proposal:	TEST-2596			Council: 4/2016	
Title:	Structure of SiO2 recovered from high pressure				
Research area:					
This proposal is a n	ew proposal				
Main proposer:	Shinji KOHARA				
Experimental te	am: Henry FISCHER				
	Annalisa POLIDORI				
	Anita ZEIDLER				
Local contacts:	Henry FISCHER				
Samples: SiO2					
Instrument		Requested days	Allocated days	From	То
insti unititi		2	2	22/06/2016	24/06/2016

Test Experiment TEST-2596

The aim of this work was to establish the mounting setup on D4c for measuring accurate diffraction patterns for small samples of permanently densified glass. For this purpose, samples of permanently densified SiO₂ glass were provided by S Kohara (Center for Materials Research by Information Integration, NIMS, Tsukuba, Japan), along with a sample of "normal" glass having the same dimensions (Fig. 1). The latter refers to a standard piece of SiO₂ glass as prepared at ambient pressure.

Two setups were tested, namely (i) resting the sample on a thin-walled vanadium tube to

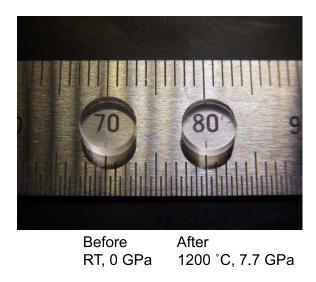


Fig. 1. Samples of "normal" SiO_2 glass (left) and 23% densified SiO_2 glass (right) with an approximate diameter of 5.7 mm and thickness of 1.5 mm.

minimise background scattering, and (ii) holding the sample within a thin-walled vanadium can. The first setup was mechanically unstable and could not be pursued. The second setup avoided this issue, but at the expense of increased background scattering from the vanadium can.

In view of (i) the small sample size and (ii) the small scattering and absorption cross-sections of Si and O, attenuation and multiple scattering corrections were not made. The data sets were normalised using the calculated self-scattering cross section, and inelasticity corrections were made by using the method described by Yarnell et al. (Phys. Rev. A **7** (1973) 2130). The resultant S(q) functions are shown in Fig. 2 where

$$S(q) = \frac{\sum_{\alpha} \sum_{\beta} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} [S_{\alpha\beta}(q) - 1]}{\langle b \rangle^2},$$

 c_{α} and b_{α} are the atomic fraction and bound coherent neutron scattering length of chemical species α , $\langle b \rangle = \sum_{\alpha} c_{\alpha} b_{\alpha}$ is the average scattering length, and $S_{\alpha\beta}(q)$ is a partial structure factor.

A separate experiment was performed using a solid cylindrical rod of "normal" SiO₂ glass in a regular setup with a beam height of 4 mm, and a full data analysis procedure was employed (Salmon et al. Phys. Rev. B **58** (1998) 6115). As shown in Fig. 2, the measured total structure factors S(q) for the small sample and for the silica rod are identical within the statistical error.

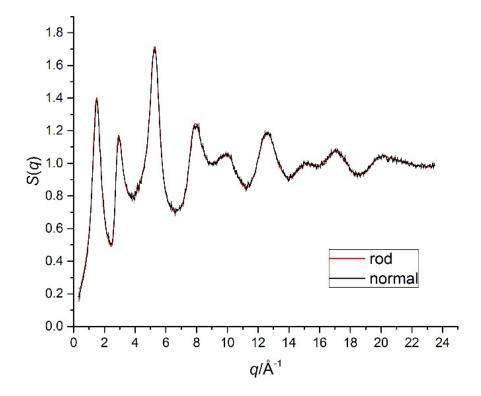


Fig. 2. The S(q) function measured for a small sample of "normal" SiO₂ in a thin-walled vanadium can, compared to the S(q) function measured for a "normal" SiO₂ rod in a regular scattering geometry with no container. The data sets are identical within the statistical error.