## **Experimental report**

| Proposal:                               | TEST   | -2731                                                                                 | <b>Council:</b> 4/2016 |                |            |            |  |  |  |  |  |
|-----------------------------------------|--------|---------------------------------------------------------------------------------------|------------------------|----------------|------------|------------|--|--|--|--|--|
| Title:                                  | SrEr20 | SrEr2O4 single crystal extinction coefficient measurement and structure determination |                        |                |            |            |  |  |  |  |  |
| Research area:                          |        |                                                                                       |                        |                |            |            |  |  |  |  |  |
| This proposal is a new proposal         |        |                                                                                       |                        |                |            |            |  |  |  |  |  |
| Main proposer                           | :      | Oleg PETRENKO                                                                         |                        |                |            |            |  |  |  |  |  |
| Experimental t                          | team:  | Navid QURESHI                                                                         |                        |                |            |            |  |  |  |  |  |
| Local contacts: Oscar Ramon FABELO ROSA |        |                                                                                       |                        |                |            |            |  |  |  |  |  |
| Samples: SrEr2                          | 204    |                                                                                       |                        |                |            |            |  |  |  |  |  |
| Instrument                              |        |                                                                                       | Requested days         | Allocated days | From       | То         |  |  |  |  |  |
| D9                                      |        |                                                                                       | 4                      | 4              | 02/12/2016 | 07/12/2016 |  |  |  |  |  |
| Abstract:                               |        |                                                                                       |                        |                |            |            |  |  |  |  |  |

## Experimental report: D9 (Exp. No.5-41-913) Detailed crystal structure of SrEr<sub>2</sub>O<sub>4</sub>.

The measurement was performed on a small high quality single crystal of  $SrEr_2O_4$  of dimension equal to 1.09, 3.73 and 2.89 mm along *a b* and *c* respectively. The sample was glued on an aluminum pine with *c* aligned parallel to the pin axis. The measurement was performed on D9 in 4-cycle mode. The temperature was set to 20 K and the neutron beam to 0.8 Å. A set of 544 independent reflections was measured considering a large reciprocal space coverage. The dataset was then corrected for absorption with the software Datap. The refinement of the data was then performed with the FullProf suite software giving a good agreement between the structural model obtained and the data (R Bragg = 3.57). In addition to the precise determination of the nuclear structure of  $SrEr_2O_4$ , the extinctions parameters of the single crystal sample were determined to a high precision. The second part of the experiment was dedicated to a measure of the fully polarised magnetic phase of  $SrEr_2O_4$  using a cryomagnet. The measurement was performed at 1.5 K under a magnetic field of 2T applied along the Er chains (*b*), the wave length was set at 0.5 Å. In order to isolate the magnetic signal a 1.5 K background measured with no field applied is subtracted from the data. The scale factor is calculated from this data set collected in zero field.

| Allows for :                 | Г1       | Г2    | ГЗ    | Г4    | Г5       | Г6  | Г7   | Г8       |
|------------------------------|----------|-------|-------|-------|----------|-----|------|----------|
| Antiferromagnetic            | Yes      |       |       | Yes   | yes      |     |      | yes      |
| component within             |          |       |       |       |          |     |      |          |
| ac-plane                     |          |       |       |       |          |     |      |          |
| Allows for                   |          |       |       |       |          | yes |      |          |
| ferromagnetism               |          |       |       |       |          |     |      |          |
| along b                      |          |       |       |       |          |     |      |          |
| Allows for                   |          | yes   | yes   |       |          |     | yes  |          |
| antiferromagnetism           |          |       |       |       |          |     |      |          |
| along b                      |          |       |       |       |          |     |      |          |
| Chi square                   |          | 39.67 | 38.50 |       |          | 14  | 39.7 |          |
| Chi <sup>2</sup> combination | unstable |       |       | 14.02 | unstable |     |      | unstable |
| with F6                      |          |       |       |       |          |     |      |          |

From the irreducible representation performed with Basireps, we have obtained 8 IRs.

With a 20.0 kOe magnetic field applied along b we are expecting a significant ferromagnetically ordered component of the magnetic structure along this direction. Only F6 allows for this specificity and returns the best refinement. The model gives 5.56  $\mu_B$  and 2.0  $\mu_B$  on site one and two respectively (3.78  $\mu_B$  per Er<sup>3+</sup> ions on average), see fig.1.

RF2 -factor : 26.1; RF2w-factor : 25.3; RF -factor : 22.8; Chi2(Intens): 14.0

We have then tried to improve the refinement by combining  $\Gamma 6$  with models allowing for antiferromagnetic component within the ac-plane. This gives us the possibility to combine  $\Gamma 6$  with  $\Gamma 1$ ,  $\Gamma 4$ ,  $\Gamma 5$  and  $\Gamma 8$ . However, none of these combinations returns an improvement to the fits obtained with  $\Gamma 6$  only (the fit does not go directly toward a stable state and keep oscillating between several configurations). In addition, the values obtained from those models for the x and z components of the magnetic moments are close to  $0 \mu_B$  and are within the range of the calculation uncertainties.

**Conclusion**: From the refinements performed on the data, it is clear that Gamma 6 is the dominant configuration for the magnetic structure. This model is consistent with the fact that we have applied a magnetic field along the b direction and forced the establishment of ferromagnetic order on both sites. Then from our refinements, we have established that allowing for a small antiferromagnetic component within the ac-plane was not improving the fits. The result of this analysis is consistent with the magnetisation measurement performed at 1.5 K and published in (PHYSICAL REVIEW B **78**, 184410 \_2008). Interestingly the different site anisotropy is conserved even in the paramagnetic phase, as an application of a magnetic field leads to different sublattice magnetizations. This perfectly agrees with the short-range order and diffuse scattering above TN.



Figure 1: Field induced magnetic structure of SrEr<sub>2</sub>O<sub>4</sub> stabilised at 1.5 K under magnetic field of 20.0 kOe.