| Proposal:                          | TEST                                               | -2977          | <b>Council:</b> 4/2018 |      |            |            |
|------------------------------------|----------------------------------------------------|----------------|------------------------|------|------------|------------|
| Title:                             | Diffusion of Hydrogen in Molybdenum Carbide Powder |                |                        |      |            |            |
| Research area:                     |                                                    |                |                        |      |            |            |
| This proposal is a new proposal    |                                                    |                |                        |      |            |            |
| Main proposer:                     |                                                    | Peter FOUQUET  |                        |      |            |            |
| Experimental team: Peter F         |                                                    | Peter FOUQUET  |                        |      |            |            |
| Local contacts:                    |                                                    | Peter FOUQUET  |                        |      |            |            |
| Samples: 10 mg Hydrogen / 5 g Mo2C |                                                    |                |                        |      |            |            |
| Instrument                         |                                                    | Requested days | Allocated days         | From | То         |            |
| IN11                               |                                                    |                | 8                      | 8    | 16/10/2018 | 24/10/2018 |
| Abstract:                          |                                                    |                |                        |      |            |            |

# Experimental Report Test-2977 "Dynamics of hydrogen Mo<sub>2</sub>C"

## 1. Introduction

Recently, there has been immense progress in technologies related to the production of renewable energy, however storage concepts have not yet reached the same maturity. 'Power-to-gas' is one of the most promising concepts: Hydrogen gas is produced from water when energy is available and reconverted when energy is in demand. Each conversion process needs to be carried out as efficiently as possible using optimized materials.

In the frame of this technology the molybdenum compounds  $MoS_2$  and  $Mo_2C$  are intensely studied catalyst candidates for the hydrogen evolution reaction (HER) in water electrolyzers [1,2]. Recent electrochemical studies on  $MoS_2$  allow detailed conclusions about its catalytic activity [3-9], which is much more governed by dynamics than the original explanations of reactivity solely in terms of defect sites suggested. A drawback of  $MoS_2$  for electrochemical application, however, is its poor electrical conductivity of only 2,17-10-2  $\Omega$ -1 cm-1 [10], which is five orders of magnitude lower than the conductivity of graphite. From this point of view,  $Mo_2C$  and MoC are very promising due to their good electrochemical performance combined with good conductivity [11-14]. Similar to some oxidic catalysts they reveal a large flexibility in structures and stoichiometry and have favourably low work functions for their active surface (e.g., 3.4 eV for the (111) surface of  $Mo_2C$ ) [15]. For both substances, the role of hydrogen intercalated below the surface and hydrogen moving along the surface is not fully understood.

## 2. Samples and Experiment

It was the aim of this test to study the dynamics of hydrogen in Mo<sub>2</sub>C powder in a neutron spin-echo experiment on IN11 in its high signal set-up IN11C. The sample was loaded ex-situ with hydrogen gas by electrolyses in contrast to the main programme of proposal 7-05-501, which aims for in-situ sorption of hydrogen.

For reasons of maximising the signal for the short test time we used a wavelength of 5.5 Å with a Q range of 0.1  $\therefore$  0.7 Å<sup>-1</sup> and measured six representative temperatures: 2 K (resolution), 50 K, 100 K, 200 K, 300 K, and 500 K.

# 3. Results

As a first important result, we can confirm that we have found strong dynamic signal that shows a Q-dependence and temperature dependence. Fig. 1 shows spectra recorded in the Q range 0.1 .. 0.7 Å<sup>-1</sup> for the hydrogen loaded Mo<sub>2</sub>C sample. At <100 K there is negligible diffusion, but at 200 K and above signal from diffusion is found. At 500 K we find that the hydrogen desorbs.



#### **References:**

- [1] B. Hinnemann et al. JACS 127(15),5308-5309, (2005).
- [2] D. Merki, St. Fierro, H. Vrubel and X. Hu, Chemical Science 2, 1262-1267, (2011).
- [3] Xiaohong Xia et al., International Journal of Hydrogen Energy 39, 9638–9650 (2014).
- [4] Xiaoping Dai et al., International Journal of Hydrogen Energy 40, 8877–8888, (2015).
- [5] Ya Yan et al., ACS Catal 4, 1693-1705, (2014).
- [6] Jesse D. Benck et al., ACS Catal. 4, 3957-3971, (2014).
- [7] Xiaoxin Zou and Yu Zhang, Chem. Soc. Rev.,44, 5148-5180, (2015).
- [8] T. F. Jaramillo et al., Science 317, 100-102, (2007).
- [9] J. D. Benck et al., ACS Catal. 2, 1916-1923, (2012).
- [10] Ch. G. Wiegenstein and K. H. Schulz, Rev. Sci. Instr. 68, 1812 1813, (1997).
- [11] Yagya N. Regmi et al., ChemCatChem 7, 3911-3915, (2015).
- [12] Yagna N. Regmi et al., J. Mater. Chem. A, 3, 10085-10091, (2015).
- [13] Chaoyun Tang et al., Journal of Power Sources, 296, 18-22, (2015).
- [14] G.García et al., Journal of Electroanalytical Chemistry, 793, 235-241, (2017).
- [15] José Roberto dos Santos Politi et al., PhysChemChemPhys 15, 12617-12625, (2013).
- [16] H.-W. Becker et al., presented at Bunsen conference, Bochum Germany, 2015.
- [17] E. Bahn, O. Czakkel, B. Nagy, K. Laszlo, S. Villar-Rodil, J.M.D. Tascon, F. Demmel,
- M.T.F. Telling, P. Fouquet, Carbon 98, 572-581 (2016).